Part One: Engineering – An Exciting Profession.
1. Introduction To The Engineering Profession.
1. Introduction To The Engineering Profession.
- Engineering Work Is All Around You. Engineering as a Profession and Common Traits of Good Engineers. Common Traits of Good Engineers. Engineering Disciplines. Accreditation Board for Engineering and Technology (ABET). Summary. Problems. Impromptu Design I.
2. Preparing For An Engineering Career.
- Making the Transition from High School to College. Budgeting Your Time. Daily Studying and Preparation. Getting Involved with an Engineering Organization. Your Graduation Plan. Other Considerations. Summary. Problems.
3. Introduction To Engineering Design.
- Engineering Design Process. Sustainability in Design. Engineering Economics. Material Selection. Teamwork. Common Traits of Good Teams. Conflict Resolution. Project Scheduling and Task Chart. Evaluating Alternatives. Patent, Trademark, and Copyright. Engineering Standards and Codes. Examples of Standards and Codes Organizations in the United States. Examples of International Standards and Codes. Drinking Water Standards in the United States. Outdoor Air Quality Standards in the United States. Indoor Air Quality Standards in the United States. Professional Profile. Design Cases. Summary. Problems. Impromptu Design II.
4. Engineering Communication.
- Communication Skills and Presentation of Engineering Work. Basic Steps Involved in the Solution of Engineering Problems. Human Presentation. Progress Report, Executive Summary, and Short Memos. Detailed Technical Report. Oral Communication and Presentation. Engineering Graphical Communication. Professional Profile. Summary. Problems.
5. Engineering Ethics.
- Engineering Ethics. The Code of Ethics of the National Society of Professional Engineers. Code of Ethics for Engineers. Engineer's Creed. Summary. Problems. Engineering Ethics: A Case Study From NSPE.
Part Two: Engineering Fundamentals – Concepts Every Engineer Should Know.
6. Fundamental Dimensions And Units.
6. Fundamental Dimensions And Units.
- Engineering Problems and Fundamental Dimensions. System of Units. Unit Conversion. Dimensional Homogeneity. Numerical versus Symbolic Solutions. Significant Digits (Figures). Engineering Components and Systems. Physical Laws and Observations in Engineering. Learning Engineering Fundamental Concepts and Design Variables from Fundamental. Summary. Problems.
7. Length And Length-Related Parameters.
- Length as a Fundamental Dimension. Measurement of Length. Nominal Sizes versus Actual Sizes. Radians as a Ratio of Two Lengths. Strain as a Ratio of Two Lengths. Area. Volume. Second Moments of Areas. Summary. Problems. Impromptu Design III. An Engineering Marvel: The New York City Water Tunnel No. 3.
8. Time And Time-Related Parameters.
- Time as a Fundamental Dimension. Measurement of Time. Periods and Frequencies. Flow of Traffic. Engineering Parameters Involving Length and Time. Angular Motion. Summary. Problems. .
9. Mass And Mass-Related Parameters.
- Mass as a Fundamental Dimension. Measurement of Mass. Density, Specific Volume, and Specific Gravity. Mass Flow Rate. Mass Moment of Inertia. Momentum. Conservation of Mass. Summary. Problems. Impromptu Design IV.
10. Force And Force-Related Parameters.
- What We Mean By Force. Newton's Laws in Mechanics. Moment, Torque--Force Acting at a Distance. Work--Force Acting Over a Distance. Pressure and Stress--Force Acting Over an Area. Modulus of Elasticity, Modulus of Rigidity, and Bulk Modulus of Compressibility. Linear Impulse--Force Acting Over Time. Summary. Problems. Impromptu Design V.
11. Temperature And Temperature-Related Parameters.
- Temperature as a Fundamental Dimension. Measurement of Temperature and Its Units. Temperature Difference and Heat Transfer. Thermal Comfort, Metabolic Rate, and Clothing Insulation. Some Temperature-Related Material Properties. Heating Values of Fuels. Degree-Days and Energy Estimation. Summary. Problems.
12. Electric Current And Related Parameters.
- Electric Current as a Fundamental Dimension. Voltage. Direct Current and Alternating Current. Electrical Circuits and Components. Electric Motors. Lighting Systems. Summary. Problems.
13. Energy And Power.
- Work, Mechanical Energy, Thermal Energy. Conservation of Energy--First Law of Thermodynamics. Understanding What We Mean by Power. Watts and Horsepower. Efficiency. Energy Sources, Generation, Consumption. Summary. Problems. Impromptu Design VI.
Part Three: Computational Engineering Tools – Using Available Software To Solve Engineering.
Problems. 14. Electronic Spreadsheets.
- Microsoft Excel--Basic Ideas. Cells and Their Addresses. Creating Formulas in Excel. Using Excel Functions. Using Excel Logical Functions. Plotting with Excel. Matrix Computation with Excel. Curve Fitting with Excel. Summary. Problems.
15. MATLAB.
- MATLAB--Basic Ideas. Using MATLAB Built-in Functions. Plotting with MATLAB. Importing Excel and Other Data Files into MATLAB. Matrix Computations with MATLAB. Curve Fitting with MATLAB. Symbolic Mathematics with MATLAB. Summary. Problems. .
Part Four: Engineering Graphical Communication – Conveying Information To Other Engineers, Machinists, Technicians, And Managers.
16. Engineering Drawings And Symbols.
16. Engineering Drawings And Symbols.
- Importance of Engineering Drawing. Orthographic Views. Dimensioning and Tolerancing. Isometric View. Sectional Views. Civil, Electrical, and Electronic Drawings. Solid Modeling. Why Do We Need Engineering Symbols? Examples of Common Symbols in Civil, Electrical, and Mechanical Engineering. Professional Profile. Summary. Problems. An Engineering Marvel: Boeing 777 Commercial Airplane.
Part Five: Engineering Material Selection – An Important Design Decision.
17. Engineering Materials.
17. Engineering Materials.
- Material Selection. Electrical, Mechanical, and Thermophysical Properties of Materials. Some Common Solid Engineering Materials. Some Common Fluid Materials. Summary. Problems. Impromptu Design VII. An Engineering Marvel: The Jet Engine.
Part Six: Mathematics, Statistics, And Engineering Economics – Why Are They Important?
18. Mathematics In Engineering.
18. Mathematics In Engineering.
- Mathematical Symbols and Greek Alphabet. Linear Models. Nonlinear Models. Exponential and Logarithmic Models. Matrix Algebra. Calculus. Differential Equations. Summary. Problems.
19. Probability And Statistics In Engineering.
- Probability--Basic Ideas. Statistics--Basic Ideas. Frequency Distributions. Measures of Central Tendency and Variation--Mean, Median, and Standard Deviation. Normal Distribution. Summary. Problems.
20. Engineering Economics.
- Cash Flow Diagrams. Simple and Compound Interest. Future Worth of a Present Amount. Effective Interest Rate. Present Worth of a Future Amount. Present Worth of Series Payment or Annuity. Future Worth of Series Payment. Summary of Engineering Economics Analysis. Choosing the Best Alternative--Decision Making. Excel Financial Functions. Summary. Problems.
Specifically designed as an introduction to the exciting world of engineering, Engineering Fundamentals: An Introduction to Engineering 4th Edition encourages students to become engineers and prepares them with a solid foundation in the fundamental principles and physical laws. The book begins with a discovery of what engineers do as well as an inside look into the various areas of specialization.
An explanation on good study habits and what it takes to succeed is included as well as an introduction to design and problem solving, communication, and ethics. Once this foundation is established, the book moves on to the basic physical concepts and laws that students will encounter regularly. The framework of this text teaches students that engineers apply physical and chemical laws and principles as well as mathematics to design, test, and supervise the production of millions of parts, products, and services that people use every day. By gaining problem solving skills and an understanding of fundamental principles, students are on their way to becoming analytical, detail-oriented, and creative engineers.
Key Features
- The book is organized into six parts with 20 chapters; each chapter begins by stating its objectives and concludes by summarizing what the reader should have gained from studying that chapter.
- Sufficient material is provided to allow Instructors to have the flexibility to choose specific topics to meet his or her needs.
- Information collection and proper utilization of that information are encouraged in this book by asking students to do a number of assignments that require information gathering by using the Internet as well as employing traditional methods.
- A full set of free PowerPoint slides created by the author offer lecture content for Instructors. Another set of slides also provides images from the text.
- Presents engineering fundamentals conceptually using everyday examples.
New to this edition
- A new section on Learning Engineering Fundamental Concepts and Design Variables from Fundamental Dimensions has been added emphasizing the idea that in order to become successful engineers, students must first completely grasp certain fundamentals and design variables and then know how these variables are calculated, approximated, measured, or used in engineering analysis and design.
- Additional sections have been added in Chapter 10, Force and Force-Related Parameters, in order to more fully explain important concepts in mechanics conceptually.
- A new section on Lighting Systems was added to introduce the basic terminology and concepts.
- A new section on Energy Sources, Generation, and Consumption has been added to introduce conventional and renewable energy sources, generation, and consumption patterns and their current importance during this period in our history where the world’s growing demand for energy is among one of the most difficult challenges that we face and that they will face as future engineers.
- A new section on Linear Interpolation was added to emphasize the significance of linear interpolation in engineering analysis.
- Now includes a section on Excel Financial Functions.
- Three new Professional Profiles from Environmental, Civil, and Mechanical Engineering disciplines have been added.
- Additional Ethics Case Studies as well as Engineering Marvels Case Studies appear in the text.
- Over 200 additional problems!
- Includes a test bank will full answers as well as Visual Basic Tutorial.
About the Author
Dr. Saeed Moaveni P.E. is a successful author, instructor, and engineering professional. He joined the Mechanical Engineering Faculty at Minnesota State University at Mankato in 1990. He is currently a Professor as well as the Chair of the Mechanical Engineering Department. He is a member of American Society for Engineering Education, the American Society of Mechanical Engineers, and the American Society of Heating, Ventilating and Air Conditioning Engineers.
He is the author of these following books:
- Engineering Fundamentals: An Introduction to Engineering.
- Engineering Fundamentals: An Introduction to Engineering, SI Edition.
- Finite Element Analysis Theory and Application with ANSYS.
Book Details
- Paperback: 702 pages
- Publisher: CL-Engineering; 4 edition (June 17, 2011)
- Language: English
- ISBN-10: 1439062080
- ISBN-13: 978-1439062081
- Product Dimensions: 9 x 8 x 1.2 inches